Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes.
نویسندگان
چکیده
Membrane association of cytochrome c (cyt c) was monitored by the efficiency of resonance energy transfer from a pyrene-fatty acid containing phospholipid derivative (1-palmitoyl-2[6-(pyren-1-yl)]hexanoyl-sn-glycero-3-phosphocholine (PPHPC)) to the heme of cyt c. Liposomes consisted of 85 mol% egg phosphatidylcholine (egg PC), 10 mol% cardiolipin, and 5 mol% PPHPC. Cardiolipin was necessary for the membrane binding of cyt c over the pH range studied, from 4 to 7. In accordance with the electrostatic nature of the membrane association of cyt c at neutral pH both 2 mM MgCl2 and 80 mM NaCl dissociated cyt c from the vesicles completely. At neutral pH also adenine nucleotides in millimolar concentrations were able to displace cyt c from liposomes, their efficiency decreasing in the sequence ATP > ADP > AMP. In addition, both CTP and GTP were equally effective as ATP. The detachment of cyt c from liposomes by nucleotides is likely to result from a competition between cardiolipin and the nucleotides for a common binding site in cyt c. When pH was decreased to 4 there was a small yet significant increase in the apparent affinity of cyt c to cardiolipin containing liposomes. Notably, at pH 4 the above nucleotides as well as NaCl and MgCl2 were no longer able to dissociate cyt c and, on the contrary, they slightly enhanced the quenching of pyrene fluorescence by cyt c. The above results do suggest that the membrane association of cyt c at acidic pH was non-ionic and presumably due to hydrogen bonding. The pH-dependent binding of cyt c to membranes was fully reversible. Accordingly, in the presence of sufficient concentrations of either nucleotides or salts rapid detachment and membrane association of cyt c could be induced by varying pH between neutral and acidic values, respectively.
منابع مشابه
Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.
Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL mole...
متن کاملCytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes.
(1) The effect of cytochrome c addition on the phospholipid structure of liposomes composed of cardiolipin, phosphatidylserine, phosphatidylglycerol, phosphatidylcholine or phosphatidylethanolamine in a pure form or in mixtures was investigated by 31P-NMR and freeze-fracture techniques. (2) Cytochrome c specifically induces the hexagonal Hii phase and possibly an inverted micellar structure of...
متن کاملInfluence of non-esterified fatty acids on respiratory control of reconstituted cytochrome-c oxidase.
Bovine heart cytochrome-c oxidase was reconstituted in liposomes (asolectin) and the activity measured in the presence and absence of uncoupler at increasing concentrations of non-esterified fatty acids. Palmitic and stearic acids resulted in a decrease of about 40% in the respiratory control ratio at a concentration of 1 microM, when measured using a spectrophotometric procedure but not with a...
متن کاملImmunological specificity and mechanism of action of IgG lupus anticoagulants.
Although observations have implied that lupus anticoagulants have immunologic specificity toward anionic phospholipids, this assumption has been directly demonstrated in only one patient with a monoclonal IgM paraprotein. We tested the generality of this hypothesis directly by isolating five IgG lupus anticoagulants from patients with lupuslike syndromes and/or thrombosis. IgG lupus anticoagula...
متن کاملMolecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex.
Induction of the peroxidase activity of cytochrome c (cyt c) by cardiolipin (CL) and H(2)O(2) in mitochondria is suggested to be a key event in early apoptosis. Although electrostatic interaction between the positively charged cyt c and negatively charged CL is a predominant force behind the formation of a specific cyt c-CL complex and sequential induction of the peroxidase activity, molecular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 31 شماره
صفحات -
تاریخ انتشار 1992